Find ∫ x^2(ln(4x))dx

 ∫xln(4x)dx

Firstly , identify this question as integration by parts. Therefore set one half as value 'u' and one as value 'dv'.

Here we will set u = ln(4x).

Therefore: du/dx = 1/4x . (4)        

                       du = 1/x dx                 We then set dv = x2 dx                                                          

                                                                          dv/dx = x2                                                              

                                                                                v = x3/3

The formula for integration by parts is :

u.v -  ∫v.du

= ln(4x).(x3) -  ∫(x3/3)(1/x)dx

= x3ln(4x) - ∫(x2/3)dx

= x3ln(4x) - x3/9 + c

SF
Answered by Sally F. Maths tutor

10819 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


How do you find the equation of a line at a given point that is tangent to a circle?


Given that y=(sin4x)(sec3x), use the product rule to find dy/dx


a)Given that 10 cosec^2(x) = 16 - 11 cot(x) , find the possible values of tan x .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning