Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.

This is an example of the chain rule.

The chain rule is the following: if y = uv, then dy/dx = udv/dx + vdu/dx

So in this case, u = ( 4x + 1)^3, v = sin(2x)

du/dx = (3)(4)( 4x + 1 )^2, dv/dx = 2cos(2x)

dy/dx = (12( 4x + 1)^2)sin(2x) + 2(( 4x + 1)^3)cos(2x)

DS
Answered by Danielle S. Maths tutor

5246 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the curve y=2*x^3-15*x^2+24*x+17. Determine whether these points are maximum or minimum.


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


The curve C has equation: 2x^2y + 2x + 4y – cos (piy) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning