Find the stationary points of the curve y=2*x^3-15*x^2+24*x+17. Determine whether these points are maximum or minimum.

First, differentiate and put the derivative equal to zero. dy/dx=6x^2-30x+24=0. Solve this equation to get that x=4 and x=1. Substitute these values into the original equation to get the corresponding values of y. The stationary points are (1,17) and (4,-10). Calculate the second derivative to get d^2y/dx^2=12*x-30. When x=1 the second derivative is less than zero so (1,17) is a maximum point and when x=4 the second derivative is greater than zero so (4,-10) is a minimum point.

SM
Answered by Shaun M. Maths tutor

3837 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2+4x+13)/((x+2)^2)(x-1) dx by using partial fractions


Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.


Find the equation of the the tangent to the curve y=x^3 - 7x + 3 at the point (1,2)


a)Given that 10 cosec^2(x) = 16 - 11 cot(x) , find the possible values of tan x .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences