Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.

the curve crosses the graph at the x axis at 0.5,3 and -4 so f(0.5)=0, f(3)=0,f(-4)=0. All linear factors are the form of g(x)=(x-a) so 0=g(0.5)=0.5-a. rearranging we get that a=0.5 ie g(x)=x-0.5 similarly the other linear factors are (x-3),(x+4) so f(x) is the product of three linear factors and so f(x)=(x-0.5)(x-3)(x+4) expanding f(x)=(x-0.5)[(x-3)(x+4)] =(x-0.5)[x(x+4)-3(x+4)] =(x-0.5)[x2+4x-3x-12] =(x-0.5)(x2+x-12)  =x(x2+x-12)-0.5(x2+x-12)  =x3+x2-12x-0.5x2-0.5x+6 =x3+0.5x2-12.5x+6   now we can multiply the coeffiecient by 2 to get the desired form f(x)=2x3+x2-25x+12    

KT
Answered by Kishan T. Maths tutor

6545 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


Integrate 2x/(x^2+3) using the substitution u=x^2+3


How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning