How do I solve a quadratic equation by factorising?

 A quadratic equation is one that includes xas the highest power of x. Factorising is achieved in 3 steps. Let’s consider the example x2-3x-3=11) Put the equation into the form ax2+bx+c=0x2-3x-4=02) FactoriseWe need two numbers that- add together to get -3- Multiply together to get -4-4x1=-4 and -4+1=-3Thus, factorising gives (x-4)(x+1)=03) Solve the equation!If two numbers are multiplied together to give 0, one of them must be 0. Thus:x-4=0 and x=4x+1=0 and x=-1The equation has been solvedAdditional points:- This technique can be applied to finding the points of intersection on the x axis for a quadratic graph. For example, y=x2-3x-4. At the x axis, y=0 so you can work out x as above.- Harder quadratic equations can also be solved by factorising. For example when a isn't 1. 2x2 + 7x + 3=0Find two numbers that multiply to give 2x3 (6) and add to give 7. In this case, 6 and 1.Split 7x into 6x +x2x2 + 6x+x + 3=0Factorise each part by taking out a common factor. 2x(x+3)+1(x + 3)=0The sames as(2x+1)(x+3)=0thus x = -1/2 or x=-3Practice questions1. Solve by factorisingx2 + 6x + 8=0x2 – 8x + 16 = 02. Find the points of intersection with the x axis fory=x2 – 14x + 48and sketch this function

SG
Answered by Shannon G. Maths tutor

4591 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

50 people ate a snack , some had apples some had biscuits the rest had banana. 21 people were male the rest female. 6 out of 8 people who had apples were female. 18 people had biscuits. 9 females had bananas. How many males had biscuits?


Solve the following simultaneous equation: y= x^2 - 3x + 4 y - x = 1


Make x the subject of the formula 3(2x – y) = ax – 4


Prove that the difference of any two consecutive square numbers is odd


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences