How do I find the turning points of a curve?

At turning points, the gradient is 0. Differentiating an equation gives the gradient at a certain point with a given value of x. To find turning points, find values of x where the derivative is 0.Example:y=x2-5x+6dy/dx=2x-52x-5=0x=5/2Thus, there is on turning point when x=5/2. To find y, substitute the x value into the original formula. y=(5/2)2-5x(5/2)+6y=99/4Thus, turning point at (5/2,99/4).Additional pointsOnce turning point is identified, you can work out if it is a maximum or minimum by finding d2y/dx2. d2y/dx2<0 - maximumd2y/dx2.>0 - minimumThus for our example aboved2y/dx2=2 - minimum

SG
Answered by Shannon G. Maths tutor

88191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.


A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning