Integrate the following between 0 and 1: (x + 2)^3 dx

Initially, we must recognise the simplest way to integrate this equation is using the 'reverse chain rule' method. 

This means raising the value of the power, in this case '3', by one, and then dividing by the new value of the power (which is four). This gives the integral to be 1/4 * (x + 2)^4 + c where c is a constant. We can check that this is correct by differentiating to give the original equation.

This is a definite integral, as there are bounds, so we must evaluate this new equation between 1 and 0: 

[1/4 * (x + 2)^4 + c] between 1 and 0 gives: 1/4[((1+2)^4 + c) - ((0 + 2)^4 + c)] = 1/4[81 - 16] = 16.25

WE
Answered by Will E. Maths tutor

3588 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of x^2e^x


Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)


Question 3 on the OCR MEI C3 June 2015 paper. Find the exact value of Integral x^3 ln x dx between 1 and 2.


Integral of 1/(x^3 + 2x^2 -x - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning