Integrate the following between 0 and 1: (x + 2)^3 dx

Initially, we must recognise the simplest way to integrate this equation is using the 'reverse chain rule' method. 

This means raising the value of the power, in this case '3', by one, and then dividing by the new value of the power (which is four). This gives the integral to be 1/4 * (x + 2)^4 + c where c is a constant. We can check that this is correct by differentiating to give the original equation.

This is a definite integral, as there are bounds, so we must evaluate this new equation between 1 and 0: 

[1/4 * (x + 2)^4 + c] between 1 and 0 gives: 1/4[((1+2)^4 + c) - ((0 + 2)^4 + c)] = 1/4[81 - 16] = 16.25

WE
Answered by Will E. Maths tutor

3204 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of 3x-x^(3/2)


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


How do I find the maximum/minimum of a function?


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences