If y = 2/3 x^3 + x^2; a) What is dy/dx? b) Where are the turning points? c) What are the nature of the turning points?

a) By simple parametric differentiation of each term, dy/dx = 2x^2 + 2x b) The condition for a turning point is the gradient (dy/dx) at that point is zero. 0 = x(2x + 2) so either x=0 or 2x+2=0. Therefore the turning points are at x=0 or x=-1. c) The nature of the turning point is how the gradient is changing at that point so we have to find d^2y/dx^2. If the value is positive it is a minimum, negative is a maximum and zero may be a stationary point. From the equation for dy/dx, this is 4x+2 (simple differentiation). We substitute in the turning points x=0,-1) and find at x=0, it is 2 so minimum and at x=-1 it is -2 which means it's a maximum.

AF
Answered by Annabel F. Maths tutor

3755 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Question 6 from Aqa 2017 June paper for C4, the vector question


Circle C has equation x^2 + y^2 - 6x + 4y = 12, what is the radius and centre of the circle


Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences