If y = 2/3 x^3 + x^2; a) What is dy/dx? b) Where are the turning points? c) What are the nature of the turning points?

a) By simple parametric differentiation of each term, dy/dx = 2x^2 + 2x b) The condition for a turning point is the gradient (dy/dx) at that point is zero. 0 = x(2x + 2) so either x=0 or 2x+2=0. Therefore the turning points are at x=0 or x=-1. c) The nature of the turning point is how the gradient is changing at that point so we have to find d^2y/dx^2. If the value is positive it is a minimum, negative is a maximum and zero may be a stationary point. From the equation for dy/dx, this is 4x+2 (simple differentiation). We substitute in the turning points x=0,-1) and find at x=0, it is 2 so minimum and at x=-1 it is -2 which means it's a maximum.

AF
Answered by Annabel F. Maths tutor

4026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function y=4sqrt(x)


Differentiate x^3 + 6x + 1


How would I write (1+4(root)7)/(5+2(root)7) in the form m + n(root)7, where m and n are integers?


Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning