Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.

Write out identity:

Rcos(theta - alpha) = Rcos(theta)cos(alpha) + Rsin(theta)sin(alpha) from formula booklet

Write out in form of question so it's easier to compare:

3cos(theta) + 5sin(theta) = R[cos(alpha)cos(theta) + sin(alpha)sin(theta)]

By comparing either side, you can see that Rcos(alpha) = 3 (equation 1) and Rsin(alpha) = 5 (equation 2)

Another identy you should know is sin^2(alpha) + cos^2(alpha) = 1

Therefore:

R^2cos^2(alpha) + R^2sin^2(alpha) = 3^2 + 5^2

Factoring out R^2:

R^2[cos^2(alpha) + sin^2(alpha)] = 9 + 25

Using identity sin^2(alpha) + cos^2(alpha) = 1:

R^2 = 34

R = root(34)

By dividing equation 2 by equation 1:

Rsin(alpha) / Rcos(alpha) = 5/3

Cancelling R, and sin/cos = tan so:

tan(alpha) = 5/3

alpha = tan^-1(5/3)

alpha = 59.04 degrees (2dp)

Therefore 3cos(alpha) + 5sin(alpha) = root(34)cos(theta - 59.04)

OS
Answered by Olivia S. Maths tutor

14883 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


Integrate 2x^4 - 4/sqrt(x) + 3 dx


Differentiate x^3(sinx) with respect to x


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning