(C3) Show that 4csc^2(x) - cot^2(x) = k can be expressed as sec^2(x) = (k-1)/(k-4) where k != 4

The student can answer this in several ways. One using the simple, known identities csc= 1/sin, cot=1/tan, sec=1/cos, tan=sin/cos, sin^2 + cos^2 = 1 and basic algebra is the following:
4csc^2 - cot^2 = k4/sin^2 - 1/tan^2 = k Substitute inverse fomulae4/sin^2 - cos^2/sin^2 = k Substitute tan4 - cos^2 = ksin^2 4 - cos^2 = k(1-cos^2) Write in terms of Coskcos^2 - cos^2 = k - 4cos^2(k - 1) = k-4 Gather Cos terms(k-1)/(k-4) = sec^2 Write in terms of inverses

FH
Answered by Fearghus H. Maths tutor

3378 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. (a) Express 7cosx - 24sin x in the form R cos (x + a), (b) hence what is the minimum value of this equation


Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.


Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences