Integrate by parts the following function: ln(x)/x^3

Let integrate be denoted by the letter I. For instance I(f) is the integration of a function f . Then Integration by parts states that I(u v') = uv - I(u' v), where u,v are function with u', v' their respective derivatives. Applying this to the above forumla we set u= ln(x) and v' = 1/ x3, then integrating v' gives us v= -1/(2 x2) and differentiating u gives u' = 1/x. Then applying the integration by parts formula we arrive at: I( ln(x)/x3 ) = -ln(x) / (2x2) + 1/2 I(1/x3). So the problem boils down to integrating 1/x3 which is -1/(2x2). Which gives us the answer: I(ln(x)/x3) = -ln(x)/(2x2) - 1/(4x2)

PD
Answered by Paul D. Maths tutor

3091 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


Integrate ln(x)


How can I determine the stationary points of a curve and their nature?


Given that dy/dx=6-8x+x^4 and that x=1 when y=4. Find an expression for y in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences