Integrate by parts the following function: ln(x)/x^3

Let integrate be denoted by the letter I. For instance I(f) is the integration of a function f . Then Integration by parts states that I(u v') = uv - I(u' v), where u,v are function with u', v' their respective derivatives. Applying this to the above forumla we set u= ln(x) and v' = 1/ x3, then integrating v' gives us v= -1/(2 x2) and differentiating u gives u' = 1/x. Then applying the integration by parts formula we arrive at: I( ln(x)/x3 ) = -ln(x) / (2x2) + 1/2 I(1/x3). So the problem boils down to integrating 1/x3 which is -1/(2x2). Which gives us the answer: I(ln(x)/x3) = -ln(x)/(2x2) - 1/(4x2)

PD
Answered by Paul D. Maths tutor

3483 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= 2^x


Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)


Show the sum from n=0 to 200 of x^n given that x is not 1, is (1-x^201)/(1-x) hence find the sum of 1+2(1/2)+3(1/2)^2+...+200(1/2)^199


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning