Integrate by parts the following function: ln(x)/x^3

Let integrate be denoted by the letter I. For instance I(f) is the integration of a function f . Then Integration by parts states that I(u v') = uv - I(u' v), where u,v are function with u', v' their respective derivatives. Applying this to the above forumla we set u= ln(x) and v' = 1/ x3, then integrating v' gives us v= -1/(2 x2) and differentiating u gives u' = 1/x. Then applying the integration by parts formula we arrive at: I( ln(x)/x3 ) = -ln(x) / (2x2) + 1/2 I(1/x3). So the problem boils down to integrating 1/x3 which is -1/(2x2). Which gives us the answer: I(ln(x)/x3) = -ln(x)/(2x2) - 1/(4x2)

PD
Answered by Paul D. Maths tutor

3195 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.


Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


A fair die has six faces numbered 1, 1, 1, 2, 2, and 3. The die is rolled twice and the number showing on the uppermost face is recorded. Find the probability that the sum of the two numbers is at least three.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning