Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))

Factorise both parts of the question. Our left side would become x(2x+3)/(2x+3)(x-2) and our right side would become 6/(x+1)(x-2). On our LHS the (2x+3) would cancel leaving x/x-2. In order to merge the fraction together, the denominators need to be the same. You should multiply the LHS by (x+1). After doing this, the denominators will match and therefore you can merge them. After merging the two denominators you get x^2+x-6/(x-2)(x+1). If you factor the numerator you get (x-2)(x+3). Then, the (x-2) cancels out and you are left with (x+3)/(x+1) 

OG
Answered by Omar G. Maths tutor

6734 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area bounded by the curve x^3-3x^2+2x and the x-axis between x=0 and x=1.


Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


What is 'Chain Rule' and why is it useful?


Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning