Show that 12 cos 30° -2 tan 60° can be written in the form square root k where k is an integer.

FIrst of all we need to understand how cos 30° and tan 60° are found. Let's think of an equilateral triangle, all three angles of the triangle are equal and 60° and each side has length 2. Let's half the triangle in the centre, now the triangle has a bottom lenth of 1, hypotenuse  length 2 and side length of square root 3. This is found by Phthagoras' Theorem,
22 = 12+(square root 3) 2. Now the angle between the hypotenuse and the bottom is still 60°, the angle between the side and the hypotenuse is 30° and other angle between the bottom and side is a right angle, 90°. By using the trigonometric functions for the halved triangle, cos 30° is equivalent to (square root 3) / 2 and tan 60° is equivalent to square root 3 by using SOHCAHTOA respectively. Therefore 12 cos 30° -2 tan 60°= 12(square root 3)/2 - 2(square root 3) = 6 square root 3 - 2 square root 3 = 4 square root 3 = square root (4x4x3) = square root 48 where k=48.

AC
Answered by Asia-Marie C. Maths tutor

11088 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is red shift?


A pen is the shape of an equilateral triangle. A goat is attached to a corner of the pen on a rope. The goat eats all the grass it can reach. It can just reach the opposite fence of the pen. What percentage of the grass in the pen does the goat eat?


Solve 6x – 5 = 2x + 13


Rationalise the denominator of 14 / 2 + root3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences