How do you find the gradient of a straight line?

The gradient of a straight line is the number before the x if it is in the form y=mx+c. So for y=6x+2 the gradient is 6. If the y has a factor, like 2y=6x+2, then you have to divide everything by the factor to get just y=, so the equation would be y=3x+1 and so the gradient would be 3. If you have been given a diagram instead of the equation, you'll need to work out the change in y-coordinate divided by the change in x-coordinate. So to do this, you pick any two points on the graph and work out the difference between the two y-coordinates and the difference between the two x-coordinates and then divide your answer for y-coordinates by your answer for x-coordinates. Example: points on line (3,2) and (6,10). Change in y is 10-2=8, change in x is 6-3=3. Gradient is 8/3.

HW
Answered by Hebe W. Maths tutor

23288 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 2x^2 + 7x + 6 = 0


Find the roots of the following equation x^2 + 6x + 5 = 0


Solve the following equation by factorisation: x^2 - 2x -15 = 0


Write 120 as a product of its prime factor


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning