Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi

we have   cos (3x) = 0.5  (1) we know that in the interval between [-pi; pi] there are two values that satify the equation cos(y) = 0.5  (2) the two solutions are y=pi/3 and y=-pi/3 in this interval.  More generally, there are two grop of solutions which are y=(pi/3) + 2kpi and y=(-pi/3) + 2kpi  (were k is a natural integer) From the equations (1) and (2) we can thus set : 3x = y  <=>  3x = (pi/3) + 2k    and    3x = (-pi/3) + 2k*pi so by dividing each part of the equation by 3 we get   x= (pi/9) + (2k/3)*pi  and x = (-pi/9) + (2k/3)*pi

MB
Answered by Marie B. Maths tutor

6744 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


What is the difference between quotient rule, product rule and chain rule, and when to use them in differentiation?


Why do you differentiate in optimisation questions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences