curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.

dy/dx = dy/dt *dt/dx (chain rule).

x=4tan(t) hence dx/dt = 4 sec2(t)

y = 531/2sin(2t) hence y'= 1031/2 cos(2t)

therefore dy/dx = 1031/2 cos(2t) / 4sec2(t). Since P is on point with x=431/2 we can duduce that t=π/3 and substituting t in dy/dx we get -531/2/16

HP
Answered by Harry P. Maths tutor

7807 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C


Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0


How can we determine stationary points by completing the square?


Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning