curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.

dy/dx = dy/dt *dt/dx (chain rule).

x=4tan(t) hence dx/dt = 4 sec2(t)

y = 531/2sin(2t) hence y'= 1031/2 cos(2t)

therefore dy/dx = 1031/2 cos(2t) / 4sec2(t). Since P is on point with x=431/2 we can duduce that t=π/3 and substituting t in dy/dx we get -531/2/16

HP
Answered by Harry P. Maths tutor

7619 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How could I sketch a graph of y=2x^3-3x^2?


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


Why is there more than one solution to x^2 = 4?


(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning