Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx

Firstly, the (2x(^3) - 7)/(3(sqrt(x))) can be split into (2x(^3))/(3(sqrt(x)) and -7/(3(sqrt(x)). These can then be simplified to (2/3)x(^5/2) and -(7/3)x(^-1/2) respectively. This then gives the equation y = 3x(^2) + 6x(^1/3) + (2/3)x(^5/2) - (7/3)x(^-1/2).

By multiplying the coefficients of x by the power of x and then taking 1 from the power it is found that dy/dx = 6x + 2x(^-2/3) + (5/3)x(^3/2) + (7/6)x(^-3/2).

SH
Answered by Samuel H. Maths tutor

16998 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.


Find the maximum point of the curve from its given equation: [...]


Differentiate y=x*ln(x^3-5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning