How do I differentiate y = ln(sin(3x))?

So we initially have the relationship y = ln(sin(3x)). As the left hand side is a function of the variable y and the right hand side is a function of the variable x i.e they are implicitly related, we need to use implicit differentiation. This means we differentiate each side of the equation seperately with respect to the functional variable, in this case x. Now differentiate the LHS, which is simple enough

d/dx(y) = dy/dx = f'(x)

To differentiate the RHS, we note that the differential of a logarithm ln(g(x)) is given by g'(x) / g(x), a relationship that can be found easily by integrating. So in this example we have that g(x) = sin(3x), therefore we need to use the chain rule to differentiate it. The differential of sin(3x) is thus cos(3x) multiplied by the differential of 3x which is 3, therefore g'(x) = 3cos(3x)  and so the differential of the RHS is 3cos(3x)/sin(3x) = 3cot(3x)

We thus have dy/dx = 3cot(3x)

IW
Answered by Ifan W. Maths tutor

19871 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


How to differentiate y=(x^2+4x)^5


What is the coefficient of the x^3 term in the binomial expansion of (2x+(1/3x^2))^9


Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning