A curve has equation y= e^x -5x, Find the coordinates of the stationary point and show it is a minimum point

differentiating ex gives ex (need to know this), differentiating -5x gives -5 (step the power of the x down by 1 and multiply the original power with the coefficient, power of the x was 1 so becomes 0, x0 = 1)

so dy/dx = ex -5, a stationary point is when dy/dx = 0 so to find the x coordinate we say ex -5 =0, then solve for x

e=5

x = ln(5) (we would leave it like this usually)

then put the x value back in to find the y value:  y = eln(5) -5 (ln(5))

y = 5 - 5ln(5) (we would leave it in the exact form usually)

so the stationary point is ( ln(5), 5-5ln(5) ) (remember it asked for coordinates)

to prove this is a minimum point we need the second derivative:

differentiating ex-5 gives ex, put in x=ln(5) and we get that d2y/dx2 = 5 at the stationary point, as this is greater than 0 it is a minimum point.

JC
Answered by James C. Maths tutor

8256 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


Differentiate with respect to x: y=2^x


Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx


Given the points P(-1,1) and S(2,2), give the equation of the line passing through P and perpendicular to PS.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences