There are n sweets in a bag, 6 of which are orange. If the probablility of eating 2 orange sweets from the bag, one after the other, is 1/3, show that n^2 - n - 90 = 0. State any assumptions made.

We are assuming that the sweets are selected at random. The question says that the sweets are eaten, so we are also assuming that they aren't put back into the bag. The total probability of selecting the two orange sweets is the product of the two individual probabilities of an orange sweet being taken each time a sweet is taken:

1, All of the sweets are in the bag
There are n total sweets in the bag, and of these there are 6 orange sweets. Thus the probability of selecting an orange sweet from this bag is 6/n.

2, There is one fewer orange sweets in the bag
There are now n-1 total sweets in the bag, and of these there are 5 orange sweets. Thus the probability of selecting an orange sweet from the bag now is 5/(n-1).

The total probability of selecting two orange sweets consecutively is therefore 6/n * 5/(n-1), which the question gives as being 1/3. Thus we are left with:

6/n * 5/(n-1) = 1/3     =>     n^2 - n - 90 = 0

JB
Answered by James B. Maths tutor

3691 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Express the recurring decimal 0.2131313 as a fraction


There are 3 red beads and 1 blue bead in a jar. A bead is taken at random from the jar. what is the probability that the bead is blue?


Lottie has a bag of applies. She gives half of them to Fred. Fred eats two and then has four left. How many apples did Lottie have at the start?


An object's displacement, s metres, from a fixed point after t seconds is s=5t^3+t^2. Find expressions for the object's velocity and acceleration at time t seconds.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences