Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)

In simple differentiation, we can use the fact that if y= x^n, dy/dx is equal to nx^(n-1). In other words, multiply the x term by the power, then decrease the power by 1. Here we have 2 terms so approach them seperately- firstly multiplying the x term - 3/2 multiplied by 3/4 gives 9/8, and 3/4 take away 1 is -1/4. This means the derivative is 9/8 x^(-1/4). Approach the second part in exactly the same way: 1/3 multiplied by -1/4 gives -1/12. -1/4 take away 1 gives -5/4. Therefore the overall answer to the question is 9/8x(-1/4) - 1/12x(-5/4)

AW
Answered by Alex W. Maths tutor

3571 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the minimum or maximum of a quadratic function?


Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


Find the differential of (cos2x)^2


How can I remember how to differentiate and integrate cos and sin?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning