Find the value of X and Y if X^2 + Y^2 = 13 and 2X + Y = 1

Firstly, since only one equation is linear, substitution must be used. This will allow us to make a quadratic equation with one variable and solve for X and Y. To do this, I will make Y the subject of the formula, thus 2X + Y = 1 becomes Y = 1 - 2X. Now, we can substitute this in for Y into the quadratic equation containing two variables, allowing us to form a quadratic equation with a single variable. Therefore, X+ Y= 13 becomes X2 + (1 - 2X)= 13. Now, we can expand the bracket and simplify, forming the quadratic equation: 5X- 4X + 1 = 13. If we equate this equation to 0 and factorise to form (5X + 6)(X - 2) = 0, we can solve to find two solutions for X. Therefore, X must be -6/5 or X must be 2. We can substitute these values of X back into our equation 2X + Y = 1 and solve to find Y. Therefore, Y must be 17/5 or Y must be -3. 

AS
Answered by Alexis S. Maths tutor

5940 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x+2y=13 and x-2y=5.


If a student wishes to have a ratio of 2:7 red pens to yellow pens in their pencil case: a) if they have 50 pens total what is the maximum amount they can carry with them b) if they have 18 red and 31 yellow what is the maximum amount they can carry


How can you differentiate when to use SohCahToa and when to use the sine/cosine rules?


How do I work out the measurement of an angle in a right-angle triangle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences