How can I solve quadratic equations by completing the square?

When we have a quadratic (ax2 + bx + c = 0) we can "complete the square" to solve for x. For example x2 + 8x + 7 = 0. First look at the x2 + 8x, in particular the coefficient of x, "b", which in this case is 8. Halve this number and put into a bracket with x, which will be squared (x + 4)2 . If we were to expand this we would get x2 + 8x good so far + 16 not what we need. To equate our expressions then, we need to subtract 16 from (x + 4)2. Rewriting our original equation with x2 + 8x substituted by (x + 4)2 -16, gives us (x + 4)2 -16 + 7 = 0, which rearranges to give (x + 4)2 - 9 = 0. Some basic algebra lets us now solve this: (x + 4)2 = 9; (x + 4) = 3 or -3; x = -1 and -7. When dealing with quadratics where "a" is not 1, we must first divide by "a" to get the term x2. Completing the square is a very useful tool to solve quadratics when it is not doable by sight, as well as for finding minimum values.

TB
Answered by Thomas B. Maths tutor

3225 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A box contains 7 caramel doughnuts. They have masses of 56 g, 67 g, 45 g, 56 g, 58 g, 49 g and 50 g. Find the median, mean and mode values of these masses. Bonus: What mass of doughnut could be added to the box to make the mean mass = 61 g.


Simplify the expression: 3x + 2y -7x + c + y


Find the intersection point between the equations y=4x+7 and 3y=12x+21


Solving quadratic equations using the factorisation method.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences