solve 4^xe^(7x+5) = 21

ln((4^x)e^(7x+5)) = ln21; apply a natural log on both sides of the equation as an exponential containing e is involved 

ln4^x + ln(e^(7x+5)) = ln21; using logarithm rules you can seperate the single log on the LHS to form to logs as ln(ab) = lna + lnb

xln4 + 7x + 5 = ln21; using logarithm rules we can move down the power on the ln4e^x and lne^(7x+5) and since lne is 1 we are left with xln4+7x+5

x(ln4 + 7) = ln21 - 5; factor out the variable components and move all numbers with no variable to the same side of the equation

x = (ln21-5)/(ln4+7); divide through by the coefficient of x

WN
Answered by Wahib N. Maths tutor

3181 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to X: x^2 + 2y^2+ 2xy = 2


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


Differentiate with respect to x: y = ln(x^2+4*x+2).


Express (16x+78)/(2x^2+25x+63) as two fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences