Solve these simultaneous equations: 2x+y-5=0 and x^2-y^2=3

To solve this problem, you need to: rearrange the first equation (1) to express y in terms of x to obtain equation (3). Then, substitute this new equation into the quadratic one (the second equation from the problem (2)). Using the formula, expand the brackets (be careful with the negative sign!) and obtain the following quadratic equation: 3x2-20x+28=0. Find the discriminant (D=64), and using the formula find values for x1 and x2. After, using (3), find values for y1 and y2. x1=14/3, y1= - 13/3 and x2=2 and y2=1

full, step-by-step solution will be demonstrated during the lesson

NB
Answered by Nana B. Maths tutor

5329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.


Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning