Given that y = x^4 tan(2x), find dy/dx

Here we have a product of two functions - they are being multiplied together - so we need to use the product rule. The product rule is: if y = u·v, dy/dx = v·u' + u·v' (where f' stands for df/dx). u = x^4     du/dx = 4x^3 v = tan(2x)  dv/dx = 2·sec^2(2x) (using the chain rule - the derivative of the outside function multiplied by the derivative of the inside function). We can then put everything in its place in the product rule expression, giving: dy/dx = tan(2x)·(4x^3) + (x^4)·(2sec^2(2x)) We can neaten this up to give: dy/dx = 4(x^3)tan(2x) + 2(x^4)sec^2(2x)

DB
Answered by Douglas B. Maths tutor

9560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


How do you differentiate the curve y = 4x^2 + 7x + 1? And how do you find the gradient of this curve?


Differentiate y = x^3 +x^2 - 4x +5 with respects to x.


How would I prepare for my Maths exams so that I get the best grade possible?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences