Given that y = x^4 tan(2x), find dy/dx

Here we have a product of two functions - they are being multiplied together - so we need to use the product rule. The product rule is: if y = u·v, dy/dx = v·u' + u·v' (where f' stands for df/dx). u = x^4     du/dx = 4x^3 v = tan(2x)  dv/dx = 2·sec^2(2x) (using the chain rule - the derivative of the outside function multiplied by the derivative of the inside function). We can then put everything in its place in the product rule expression, giving: dy/dx = tan(2x)·(4x^3) + (x^4)·(2sec^2(2x)) We can neaten this up to give: dy/dx = 4(x^3)tan(2x) + 2(x^4)sec^2(2x)

DB
Answered by Douglas B. Maths tutor

10415 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of y = (5x-4) / (2x+3)


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


Use the chain rule to show that, if y = sec(x), then dy/dx = sec(x)tan(x).


Rationalise the surd: 2/root(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning