Solve the simultaneous equations: 3x+7y=18 and x+2y=5

  • To help us to see what we need to do in this question, I would always line the equations up one above the other, and label them (1) and (2). Here we'll say that (1) is 3x + 7y =18 and (2) is x+ 2y =5 - To solve this problem, we first need to eliminate either the x or the y values so that we can solve for just one of them initially. To do this, we need the same amount of x's in both equations, or the same amount of y's. - This can be done many ways, but one of the simplest ways would be to multiply equation (2) by 3. The important thing to remember is to multiply the whole equation by the same amount, not just the x value. (2) x 3 is 3x + 6y = 15 - Now to remove the x's from our problem to solve for y, we can do (1) - (2). 3x + 7y =28 - 3x + 6y =15 - This gives us a value of y =3 - Now that we have a value for y, we can put this into one of our original equations (it doesn't matter which equation you use). - y =3 into (1) is 3x + 7(3) = 18..... 3x+21=18 - Rearrange the equation to find your value for x. 3x = -3 and so x = -1 - To check your answer, try put your values for x and y into equation (2) and see if it equals the correct number.
HC
Answered by Harriet C. Maths tutor

6570 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise 7x^2+4x-3


James has a short drive to his garage which he wishes to pave with a single layer of bricks. If his square drive has side length 2m and James buys the bricks in stacks of 10 with each brick being 0.2m long and half as wide how many stacks must James buy?


Expand and simplify 2(a + 3) + 5(a – 1)


What is the value of 5^15 / (5^3)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences