Integrate the following expression with respect to x by parts: (2*x)*sin(x)

The integration by parts formula: S:udv/dx = uv -  S:v*du/dx, where S: means "Integral of with respect to x" 

Let 2*x be u and sin(x) be dv/dx

So du/dx =2 and v= -cos(x)

So S:(2x)sin(x) = (2x)(-cos(x)) - S:-cos(x)*2

= -2xcos(x) + 2*sin(x)

= 2sin(x) - 2x*cos(x) +c

DP
Answered by David P. Maths tutor

3169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I tell if a curve has a maximum or a minimum?


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning