Integrate the following expression with respect to x by parts: (2*x)*sin(x)

The integration by parts formula: S:udv/dx = uv -  S:v*du/dx, where S: means "Integral of with respect to x" 

Let 2*x be u and sin(x) be dv/dx

So du/dx =2 and v= -cos(x)

So S:(2x)sin(x) = (2x)(-cos(x)) - S:-cos(x)*2

= -2xcos(x) + 2*sin(x)

= 2sin(x) - 2x*cos(x) +c

DP
Answered by David P. Maths tutor

2891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following expression with respect to x, (2+4x^3)/x^2


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


Differentiate y=3xe^{3x^2}+2x


Differentiate with respect to X: x^2 + 2y^2+ 2xy = 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences