How do you differentiate x^x?

There are two ways we can find the derivative of x^x.

It's important to notice that this function is neither a power function of the form x^k nor an exponential function of the form b^x, so we can't use the differentiation formulas for either of these cases directly.

Method 1
1) Let y=x^x, and take logarithms of both sides of this equation:

ln(y)=ln(x^x)

2) Using properties of logarithmic functions, we can rewrite this as:

ln(y)=x.ln(x)

3) Then, differentiating both sides with respect to x and using the chain rule on the LHS and product rule on the RHS, this gives us:

1/y.dy/dx=ln(x)+1

4) Rearranging, we have:

dy/dx=y.(ln(x)+1). That is, dy/dx=x^x(ln(x)+1).

Method 2
1) Write x^x=e^(ln(x^x))=e^(x.ln(x)), using the properties of the exponential and logarithmic functions.

2) Now, d/dx(x.ln(x))=ln(x)+1 by the product rule. Hence, d/dx(e^(x.ln(x)))=(ln(x)+1).(e^(x.ln(x)) by the chain rule, and using the fact that the derivative of e^[f(x)]=f'(x).e^[f(x)] for any differentiable function f(x).

3) Finally, rewriting e^(x.ln(x)) as x^x gives d/dx(x^x)=x^x.(ln(x)+1), as with the first method.

AK
Answered by Alina K. Maths tutor

392729 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A school has a number of students. One is chosen at random; the probability that the student is female is 2/5. Knowing that there are 174 male students, work out the total number of students in the school.


Find the intercept between the two equations below?


Shampoo is sold in two sizes. 1) 500 ml for £1.98 2) 3 litres for £12.80 (now 15% off). Which is better value for money?


(i) Find the gradient of the straight line passing through the points: (0,3) and (9,21). (ii) Write down the equation of the line in form y = mx + c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning