x is an integer such that ‎1≤x≤9, Prove that 0.(0x)recurring=x/99

r=0.0.x.

r=0.0x0x0x0x....

100r=x.0x0x0x     (1)

10,000r=x0x.0x0x0x      (2)

(2) - (1):  9,900r=x00

r=x00/9,990        r=x/99

EE
Answered by Ellie E. Maths tutor

13465 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

v^2 = u^2 + 2as u = 12 a = –3 s = 18 (a) Work out a value of v. (b) Make s the subject of v^2 = u^2 + 2as


The equation of line A is y = 6x -4. The equation of line B is 2y - 12x + 14 = 0. Are these two lines parallel?


Solve the equation 3x + 1 = 4x - 2


Solve the equation 4(3x-2)=2x-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning