[equ1] 3y − 6x = 3 [equ2] y y x 2 − x + 2 2 = 2

Firstly start by rearranging [equ1] to get y = 2x + 1 . Then substitute this result into [equ2] this will give you (2x + 1) (2x ) x . Simplify the equation and subtract two from both sides to 2 − x + 1 + 2 2 = 2 get an ordinary quadratic equation 4x x . Following on from this utilise the quadratic 2 + 3 − 1 = 0 formula x = . After using this equation the values for are . Then use the 2a −b±√b −4ac 2 x x =− 1, x = 4 1 rearranged form of [equ1] to find the values of y . Which, after evaluation, are y =− 1, y = 2

AS
Answered by Alistair S. Maths tutor

4412 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove algebraically that (2n + 1) to the power of 2 - (2n-1) is an even number


Solve (3x +1)/x + (2x-1)/3 = -3, giving x to two decimal places.


c is a positive integer. Prove that (6c^3 + 30c) / (3c^2 +15) is an even number.


f(x) = 5x − 12. (i) Calculate f(4). (ii) Find f( x + 1). Give your answer in the form ax + b .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning