How to Integrate ln(x)?

Integrating this expression is a simple trick. We use integration by parts. For this we need a function we can integrate and a function we can differentiate. We know how to differentiate ln(x) which is 1/x. Looking at the expression we could see it as 1*ln(x) hence we can use 1 as our other funciton of x. Using the integration by parts formula given in the formula booklet we get INT(ln(x)) = xln(x) - INT(1) = x(ln(x) -1)

JR
Answered by Jordan R. Maths tutor

6216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences