How to Integrate ln(x)?

Integrating this expression is a simple trick. We use integration by parts. For this we need a function we can integrate and a function we can differentiate. We know how to differentiate ln(x) which is 1/x. Looking at the expression we could see it as 1*ln(x) hence we can use 1 as our other funciton of x. Using the integration by parts formula given in the formula booklet we get INT(ln(x)) = xln(x) - INT(1) = x(ln(x) -1)

JR
Answered by Jordan R. Maths tutor

6991 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integration by parts: Integrate the expression x.ln(x) between 1 and 2.


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


y=x^2, find dy/dx


f(x) is defined by f(x) = 3*x^3 + 2*x^2 - 7*x + 2. Find f(1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning