What does it mean to differentiate a function?

A function represents a quantity. For example the function s = (6t2 + 4t) m, could represent displacement. The unknown t is inputted to find the displacement an object travels at a certain time.

The differencial of a function represents the rate of change of that function. So for displacement the differencial would be the rate of change of displacement. The rate of change of displacement tells you how how quickly the respective moving object is covering distance. This is velocity.

So the rate of change of displacement is velocity. When you differenciate displacement you get velocity. In the example s = (6t2 + 4t) m , we know, by differenciating displacement, velocity, v = (12t + 4) ms-1.

If you consider the velocity of an object. The rate of change of velocity is how quickly it increases or decreases. This is the accelleration of the moving object.

So the rate of change of velocity is accelleration. When you differenciate velocity you get accelleration. In the example we found v = (12t + 4) ms-1, we know, by differenciating accelleration, a = 12 ms-2

Summary:

DISPLACEMET >differenciateVELOCITY >differenciateACCELLERATION

Note: The reverse of differenciation is intergration. Considering this, the following can be said:

ACCELLERATION >intergrateVELOCITY >intergrate> DISPLACEMENT

NJ
Answered by Neha J. Maths tutor

5610 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the first order derivative of sin(x) and cos(x) functions?


Calculate the distance of the centre of mass from AB and ALIH of the uniform lamina.


Find the values of x that satisfy the following inequality 3x – 7 > 3 – x


Express cos(x) + (1/2)sin(x) in terms of a single resultant sinusoidal wave of the form Rsin(x+a)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning