Demonstrate that (2^n)-1 is not a perfect square for any n>2, n ∈ N.

Assumption: If sqrt(2^n- 1) ∈ℕ , it means that there is a k ∈ ℕ such that (2^n-1) = k^2  ⇒ k is odd, so there is m ∈ ℕ such that (2^n-1)=(2m+1)^2 . By solving the equation we get 2^n= 4m^2+4m+2. We divide both sides by 2 for easier observation and then we get 2^(n-1) =2m^2+2m+1. We can see that 2^(n-1) is even for any n>2 and 2m^2+2m+1 is odd for any m∈ℕ. Thus, there is no solution to this equation for n>2, so our assumption is wrong => (2^n)-1 is not a perfect square.

IV
Answered by Ionut Valeriu G. Maths tutor

7628 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you split a fraction into partial fractions?


Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


Differentiate with respect to x: y = ln(x^2+4*x+2).


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning