What does it mean to differentiate a function?

  • Google+ icon
  • LinkedIn icon

A function represents a quantity. For example the function s = (6t2 + 4t) m, could represent displacement. The unknown t is inputted to find the displacement an object travels at a certain time.

The differencial of a function represents the rate of change of that function. So for displacement the differencial would be the rate of change of displacement. The rate of change of displacement tells you how how quickly the respective moving object is covering distance. This is velocity.

So the rate of change of displacement is velocity. When you differenciate displacement you get velocity. In the example s = (6t2 + 4t) m , we know, by differenciating displacement, velocity, v = (12t + 4) ms-1.

If you consider the velocity of an object. The rate of change of velocity is how quickly it increases or decreases. This is the accelleration of the moving object.

So the rate of change of velocity is accelleration. When you differenciate velocity you get accelleration. In the example we found v = (12t + 4) ms-1, we know, by differenciating accelleration, a = 12 ms-2



Note: The reverse of differenciation is intergration. Considering this, the following can be said:


Neha J. A Level Further Mathematics  tutor, A Level Maths tutor, A Le...

About the author

is an online A Level Maths tutor with MyTutor studying at Sheffield University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss