Using the "complete the square" method, solve the following x^2 +4x - 21 =0

x2+4x-21= 0,  This can be factorised into brackets as shown: (x+2)- 4 - 21 = 0 SImplified, so all x's are on one side of the equation: (x+2)= 25, Removing square root, DONT FORGET "±" : (x+2) = ± 5,  Solve for two solutions: x = 3, x = -7

CS
Answered by Charlotte S. Maths tutor

5119 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.


Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


Starting from the fact that acceleration is the differential of velocity (dv/dt = a) derive the SUVAT equations.


Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences