Where does the circle (x-6)^2+(y-7)^2=4 intersect with y=x+3

Where does the circle (x-6)2+(y-7)2=4 intersect with y=x+3We need to sub y=x+3 into the circle equation giving us an equation in just x:(x-6)2+(x-4)2=4Next we expand out the brackets:x2 -12x+36+x2-8x+16=4Next collect the terms:2x2-20x+48=0Next we need to factorise to solve for x:2(x2-10x+24)=2(x-6)(x-4)=0this gives us x solutions of x=6 and x=4Now we need to sub these back into y=x+3 to get the y coordinates.This gives y=9 and y=7The overall answer:The circle and the line given intersect at the points (6,9) and (4,7)

NL
Answered by Nicola L. Maths tutor

3285 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


how do i sketch the graph of y=ln(|x|) ?


Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.


For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning