Rewrite in the logarithmic form: T=2π√(L/G)

Firstly we should add log to both sides of the equation, knowing that modifying one side can be balanced by doing the exact same thing on the other side. On the right hand side, using logarithmic identities, we convert log(2π√(L/G)) into a sum of logs: log(2) + log(π) + log(√(L/G)). Looking at the third log, we know that the square root of L/G can also be expressed as L/G to the power of 1/2. Making use of another logarithmic identity, we can make log(√(L/G)) into 1/2log(L/G). Finally, we use another logarithmic identity to convert the division of L and G into a subtraction of logs, ending up with the final answer: log(T) = log(2) + log(π) + 1/2*(log(L) - log(G))

JP
Answered by Javier P. Maths tutor

14744 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A bag contains 12 bals of different colours: 5 red, 4 blue and 3 yellow. What is the probability of not selecting a red ball


A car costs £300. The price is then reduced by 20%. However, the shop increases the new price by 15%. Fadhila says, "20 - 15 = 5, so the original price of the car has been reduced 5%". Is she right? What is the final price of the car?


Solve 6x^2+8x-8 = 0 using factorisation.


Solve the simultaneous equations: 2x + 3y = 28 and x + y = 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning