Rewrite in the logarithmic form: T=2π√(L/G)

Firstly we should add log to both sides of the equation, knowing that modifying one side can be balanced by doing the exact same thing on the other side. On the right hand side, using logarithmic identities, we convert log(2π√(L/G)) into a sum of logs: log(2) + log(π) + log(√(L/G)). Looking at the third log, we know that the square root of L/G can also be expressed as L/G to the power of 1/2. Making use of another logarithmic identity, we can make log(√(L/G)) into 1/2log(L/G). Finally, we use another logarithmic identity to convert the division of L and G into a subtraction of logs, ending up with the final answer: log(T) = log(2) + log(π) + 1/2*(log(L) - log(G))

JP
Answered by Javier P. Maths tutor

15105 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x^2+4x-12 in the form (x+a)^2+b where 'a' and 'b' are constants to be determined.


Find the length of X and Y of these two right angled triangles (pictured) and prove their congruence, stating the rule.


Solve the quadratic equation 2(x^2) + 3x + 1 = 0


Factorise x^2+3x+2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning