Solve the following simultaneous equations: 6a + b = 16; 5a - 2b = 19

There are 2 methods in solving this set of equations, in order to find the 2 unknowns: (a) and (b). Method 1: Firstly rearrange equation 1 to make (b) the subject: b = 16 - 6a. This can then be substituted into the (b) in equation 2 so the resulting equation only has 1 unknown, (a). 5a - 2(16 - 6a) = 19. Open up the brackets: 5a - 32 + 12a = 19, and then simplify the equation: 17a = 51. This equation can then be solved to get the value of (a): a=3. (a) can then be substituted into one of the equations to find (b): b = 16 - 6(3); b = -2Method 2: The aim of this method is to make one of the unknowns, (a) or (b), in both equations equal. For example, equation 1 can be multiplied by 2 to get 12a + 2b = 32. The 2 equations can then be added to each other in order to cancel out the (b)'s and obtain an equation with only 1 unknown. This equation can then be solved to get the value of (a). (12a + 2b) + (5a - 2b) = 32 + 19; 17a = 51; a = 3. The value of (a) can then be substituted into one of the equations in order to obtain (b).

DC
Answered by Doroti C. Maths tutor

3979 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The area of a parallelogram is given by the equation 2(x)^2+7x-3=0, where x is the length of the base. Find: (a) The equation of the parallelogram in the form a(x+m)^2+n=0. (b) The value of x.


There are some people in a cinema. 3/5 of the people in the cinema are children. For the children in the cinema, number of girls:number of boys = 2:7. There are 170 girls in the cinema. Work out the number of adults in the cinema.


y = 4x^2 + 20x + 11 is a curve. Find the minimum point of the curve.


Prove algebraically that (4n + 1)² − (2n − 1) is an even number for all positive integer values of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning