Prove the identity (4cos(2x))/(1+cos(2x)) = 4-2sec^2(x)

Write down the formulas involving cos2x and select the one which involves only cosine, this is because cosine (or derivations of it) is the only trigonometric function in this question. Substitute the chosen identity which is cos(2x) = 2cos^2(x)-1 into the left handside (LHS) of the equation which should give you: (8cos^2(x) - 4)/(2cos^2(x))   This can be cancelled down to 4-2/cos^2(x) Manipulate the right handside (RHS) of the equation by using the identity: sec(x) = 1/cos(x). This should give the RHS to be 4-2/cos^2(x) which = LHS. Make it obvious to the examiner that the sides of the are equal by equating them at the end so you don't lose marks!

TN
Answered by Tegan N. Maths tutor

13000 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a stationary point and how do I find where they occur and distinguish between them?


How do i remember the difference between differentiation and integration?


Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?


Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning