How would I differentiate something with the product rule?

Okay so, first of all the product rule in itself is fairly simple. Take the product of a function "u" and a function "v" to be a compound function. You can write this as "uv". The standard result is "u'v + v'u", where u' and v' are basically just the differentiated functions u and v. So now lets take the example of x2sin(x) where we know both how to differentiate x^2 and we know how to differentiate sin(x). If we say x2 is u and sin(x) is v then we know u' is 2x, and v' is cos(x). Now we have u, u', v and v' we can just substitute them into the standard pattern giving us 2xsin(x) + x2*cos(x). Try the same thing with x3 * cos(x) now.

SD
Answered by Shivam D. Maths tutor

3476 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 5x^2 + 11x + 5 with respect to x


The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.


Rationalise the fraction : 5/(3-sqrt(2))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning