Find the gradient of the curve y = x^2(ln(x)) at x = e

We'll need to use the product rule.

Let's take u = x^2 -> du/dx = 2x, and v = ln(x) -> dv/dx = 1/x

Then dy/dx = x^2(1/x) + 2xln(x) = x + 2xln(x)

Substituting our x value gives (dy/dx)|(x = e) = e + 2eln(e) = 3e

CR
Answered by Charlie R. Maths tutor

6707 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrating (e^x)sin(x)


Find the stationary points of y= 5x^2 + 2x + 7


How to solve the absolute-value inequalities?


What is the gradient of the curve y = 2x^3 at the point (2,2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning