Find the gradient of the curve y = x^2(ln(x)) at x = e

We'll need to use the product rule.

Let's take u = x^2 -> du/dx = 2x, and v = ln(x) -> dv/dx = 1/x

Then dy/dx = x^2(1/x) + 2xln(x) = x + 2xln(x)

Substituting our x value gives (dy/dx)|(x = e) = e + 2eln(e) = 3e

CR
Answered by Charlie R. Maths tutor

6711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^3 – 5/(x^2) , x =/= 0, find in its simplest form dy/dx.


Please explain Pythgoras Theorem


Solve the equation 2cos2(x) + 3sin(x) = 3, where 0<x<=π


Solve the inequality x^2 > 3(x + 6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning