Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°

To start, we use the inverse trigonometric formulae to convert the 'cot' function into a 'tan' function: cot(2x)=1/(tan(2x))=3 Inverting this gives: tan(2x)=1/3 2x=arctan(1/3)=18.43°or (180+18.43)° Therfore dividing by 2 gives the solutions as: x= 9.22° or 99.22°

MG
Answered by Matthew G. Maths tutor

9377 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (sin(6x))(sec(2x) ), find dy/dx


Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


Find the turning points of the curve (x^3)/3 + x^2 -8x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning