Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°

To start, we use the inverse trigonometric formulae to convert the 'cot' function into a 'tan' function: cot(2x)=1/(tan(2x))=3 Inverting this gives: tan(2x)=1/3 2x=arctan(1/3)=18.43°or (180+18.43)° Therfore dividing by 2 gives the solutions as: x= 9.22° or 99.22°

MG
Answered by Matthew G. Maths tutor

9137 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(3x-1)/(2x-1)


Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.


Differentiate 3x^2 + 4x - 7


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning