Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°

To start, we use the inverse trigonometric formulae to convert the 'cot' function into a 'tan' function: cot(2x)=1/(tan(2x))=3 Inverting this gives: tan(2x)=1/3 2x=arctan(1/3)=18.43°or (180+18.43)° Therfore dividing by 2 gives the solutions as: x= 9.22° or 99.22°

MG
Answered by Matthew G. Maths tutor

9375 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x^3+2*x^2-5*x-6=0


How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?


Using the product rule, differentiate y=(2x)(e^3x)


Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning