Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°

To start, we use the inverse trigonometric formulae to convert the 'cot' function into a 'tan' function: cot(2x)=1/(tan(2x))=3 Inverting this gives: tan(2x)=1/3 2x=arctan(1/3)=18.43°or (180+18.43)° Therfore dividing by 2 gives the solutions as: x= 9.22° or 99.22°

MG
Answered by Matthew G. Maths tutor

8747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = (x^3)/3 - 4x^2 + 12x find the stationary points of the curve and determine their nature.


A circle C with centre at the point (2, –1) passes through the point A at (4, –5). Find an equation for the circle C.


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences