Express cos(2x) in the form acos^2(x) + b, where a and b are constants.

we first remember the double angle formula, a really important formula. cos(2x) = cos2(x) - sin2(x).We know that sin2(x) + cos2(x) = 1, therefore, cos(2x) = cos2(x) + cos2(x) - 1. Giving our final answer to be, cos(2x) = 2cos2(x) - 1.

JP
Answered by Jack P. Maths tutor

6451 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does integration work?


The point A lies on the curve y=5(x^2)+9x , The tangent to the curve at A is parralel to the line 2y-x=3. Find an equation to this tangent at A.


Calculate the indefinite integral of ln(x)?


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning