Sketch the curve y = x^2 - 6x + 5, identifying roots and minima/maxima.

Remeber the formula: (a - b)2 = a2 - 2ab + b2. Notice that y = x2 - 23x + 5, so we want to write this using (x - 3)2 = x2 - 23x* + 9. Taking 4 from both sides gives:  (x - 3)2 - 4 = x2 - 6x + 5 = y.

We need some simple facts about graphs: (1) y = x2 is a parabola (U shaped); (2) if we replace x wih x - 3 we move the graph to the right by 3; (3) if we add -4 to y, the graph moves down by 4.

To find minima: notice that (x - 3)2 is always positive or 0, so (x - 3)2 + -4 >= -4. If x is not 3, then (x - 3)2 > 0, so y > -4; but if x = 3, we have y = -4, so -4 is the smallest value of y (i.e. a minimum) at (3, -4).

To find roots, we can solve the quadratic y = 0:

(x - 3)2 - 4 = 0  <=>  (x - 3)2 = 4  <=>   x - 3 = 2  or  x - 3 = -2  <=>  x = 5  or  x = 1.

(Rememer that x2 = a2 has two solution: x = a and x = -a.) With this it should be easy to sketch the curve!

TD
Answered by Tutor69809 D. Maths tutor

4848 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sean drives from Manchester to Gretna Green. He drives at an average speed of 50 mph for the first three hours. He then breaks and drives the final 150 miles at 30 mph. Sean thinks his average speed is 40 mph ,is he correct?


Work out 2^3 + 4^2


A-level - How to differentiate e^x where x is more complicated?


Simultaneous equations - Find the values of y and x: 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences