Why is n^0 always 1 and not 0?

Anything raised to the zeroth power is a difficult thing to get your head around. The easiest explanation (not a full proof) is to look at what happens as we go down in powers of n: n^3=nnn        n^2=(n^3)/n=nn       n^1=(n^2)/n=n From that it follows that n^0=(n^1)/n=n/n=1 So n^0=1. I think the easiest way to think about this conceptually is that, although x+0=x, x0=0 while x*1=1. Funny things happen with 0, which is why you should never consider the expression 0^0 as either equal to 0 or 1! (Or not at this level anyway.)

JC
Answered by Joseph C. Maths tutor

3609 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Suppose we have a circle with the equation x^2 +y^2 =25. What is the equation to the tangent to the circle at point (4,3)?


The equation of line L1 is y=4x+3, The equation of line L2 is 4y-16x-2=0, Show that these two lines are parallel.


Solve the following simultaneous equations to find x and y.


Solve x^2 = 4(x-3)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences