Solve algebraically the following if there is a solution: x+y=3 2x+y=5 x^2+y=6

First we realize that the question asks IF there is a solutionLet us start with the simplest equations, x+y=3 and 2x+y=5By subtracting the first equation from the second we see x=2 and subbing into x+y=3 we get 2+y=3 and so y=1Now does this 'agree' with our third equation? subbing our values in for x and y into x^2+y=9 we get 2^2+1=5 which means 5=5 which is clearly true. So x=2 and y=1 are the solutions to all three equations.

MS
Answered by Max S. Maths tutor

3141 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What are the roots of the graph of this equation: x^2 + 9x + 18 = 0


How do I solve the equation x^2 = 3x - 1 ?


A bag contains 5 blue marbles and 5 red marbles. If marbles are NOT replaced after being selected from the bag, what is the probability (in percentage) of picking 2 red marbles? Give your answer to one decimal place.


Draw a graph of x = (y + 4)/4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning