Calculate the shaded finite region between the curve and the axis for the curve: 3x^2 +11x -4 = 0

3x2+11x-4=0 #Factorise to find where the curve crosses the x axis (3x-1)(x+4)=0 #Each bracket equals 0 x=1/3, -4  #Integrate the curve between these two points to find the area enclosed in the curve [x3 + 11/2 x2 -4x] #With limits 1/3 to -4 ((1/3)3 + 11/2(1/3)2-4(1/3)) - ((-4)3 + 11/2(-4)2 -4(-4)) = -40.6851851851... #The negitive sign only means the area is below the x axis Area is equal to 40.7 #Ussually round to 3d.p

HF
Answered by Hugo F. Maths tutor

3278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=3xe^{3x^2}+2x


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning