A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.

If the curve is meeting the x-axis, notice that this means y = 0. So we must solve sin(t)sin(2t) = 0 for t within the given bounds. Using a trigonometric identity sin(2t) = 2cos(t)sin(t), we obtain sin2(t)cos(t) = 0. That is, EITHER sin2(t) = 0 meaning sin(t) = 0, or cos(t) = 0. We have to be slightly careful to keep t within the bounds. If sin(t) = 0 then t = 0 or t = pi. If cos(t) = 0 then t = pi/2, giving us 3 solutions in total. From here we simply substitute in our values of t. So x = 1 - cos(0) = 0 and y = sin(0)sin(0) = 0 giving us the points (0,0) when t = 0. Secondly, x = 1 - cos(pi/2) = 1 and y = sin(pi/2)sin(pi) = 0 since sin(pi) = 0 and so we get (1,0) when t = pi/2. Finally, x = 1 - cos(pi) = 2 and y = sin(pi)sin(2pi) = 0 and so we get (2,0) when t = pi.

CB
Answered by Callum B. Maths tutor

15860 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality x^2 > 3(x + 6)


f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


The gradient of a curve is given by dy/dx = 3 - x^2. The curve passes through the point (6,1). Find the equation of the curve.


Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning